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Collecting energy related data

Data
Concentrator

Utility Center

Data
Concentrator

Ethernet

PLC

Smart Meter

V. Tudor (tudor@chalmers.se) 4 / 64

Before AMI
data collection frequency - monthly
only energy consumption readings
no direct communication to the meter



Collecting data from AMI
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Before AMI
data collection frequency - monthly
only energy consumption readings
no direct communication to the meter

With AMI
data collection frequency - minutes or less
energy consumption, power quality info., alarms
two-way communication with the meter



Utilizing large data from AMI
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Many opportunities - great potential
billing, grid operation, marketing, demand-response,
micro-markets, load forecast
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Many opportunities - great potential
billing, grid operation, marketing, demand-response,
micro-markets, load forecast

Privacy challenges
fine-grained AMI data - sensitive informationa

privacy invasive techniques against anonymization b,c,d

a
Mármol, F.G., Sorge, C., Ugus, O., and Pérez, G. M. 2012. Do not snoop my habits: preserving

privacy in the smart grid. In IEEE Communications Magazine, 50(5), pp.166-172.
b

Jawurek, M., Johns, M. and Rieck, K., 2011, December. Smart metering de-pseudonymization.
In Proceedings of the 27th Annual Computer Security Applications Conference (pp. 227-236). ACM.

c
Tudor, V., Almgren, M. and Papatriantafilou, M., 2013. Analysis of the impact of data granularity

on privacy for the smart grid. In Proceedings of the 12th ACM workshop on Workshop on privacy in
the electronic society.

d
Tudor, V., Almgren, M., and Papatriantafilou, M., 2015. A study on data de-pseudonymization in

the smart grid. In Proceedings of the Eighth European Workshop on System Security



AMI data anonymization - remove PII1 and aggregation

Raw AMI data
<smID, timestamp, value>

HF data
<anon(smID) , timestamp , value>

LF data
<smID , timestampAGGR , valueAGGR>

Grid operation
(privacy-invasive)

Billing
(less privacy-invasive)

Electrical company
(data collector)

Adversary
(extracting sensitive 

information from AMI data)

HF data
<anon(smID) , timestamp , value>

LF data
<smID , timestampAGGR , valueAGGR>

LF’ data
<anon(smID ), timestampAGGR’ , valueAGGR’>

1
PII - Personal Identifiable Information
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De-anonymization
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The adversary de-anonymizes AMI datasets using information extracted from AMI data itself.



A bit of formalism
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C = {(identifier, timestamp, value)} - original dataset

There are two functions such that two new datasets can be derived

{
H = fH (C)
L = fL(C)



De-anonymization
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C = {(identifier, timestamp, value)} - original dataset

There are two functions such that two new datasets can be derived

{
H = fH (C)
L = fL(C)

An adversary is interested in matching the identities inH with L.

There is a function g(·), such that L′ = g(H).

Link entries L′ ∼ L.



De-pseudonymization
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C = {(identifier, timestamp, value)} - original dataset

There are two functions such that two new datasets can be derived

{
H = fH (C)
L = fL(C)

An adversary is interested in matching the identities inH with L.

There is a function g(·), such that L′ = g(H).

Link entries L′ ∼ L.

There is a function r(·), such thatHk,k+1 = r(Hk ,Hk+1)



Complete adversarial picture
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V. Tudor (tudor@chalmers.se) 15 / 64



Road so far

The Advanced Metering Infrastructure (AMI)
AMI data - utility and privacy
Privacy issues - de-anonymization and
de-pseudonymization
Differential-privacy and AMI data
AMI data application - energy load forecast using
DP-aggregated AMI data
Conclusion
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AMI data characteristics
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Reporting sensitive data by
using different identities

A→ {A′, A′′, A′′′}
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Reporting sensitive data by
using different identities

A→ {A′, A′′, A′′′}

The time window for keeping a
client’s data

...days,months, years, ...
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Reporting sensitive data by
using different identities

A→ {A′, A′′, A′′′}

The time window for keeping a
client’s data

...days,months, years, ...

The level of precision on which
consumed energy is reported

Wh, kWh, 10n × kWh, ...
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How do the properties of the HF datasets influence the effectiveness of utilizing pseudonyms?

Reporting sensitive data by
using different identities

A→ {A′, A′′, A′′′}

The time window for keeping a
client’s data

...days,months, years, ...

The level of precision on which
consumed energy is reported

Wh, kWh, 10n × kWh, ...



De-pseudonymization problem
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Linking together data produced by the same source
(household), but stored under different pseudonyms.

We assume a scenario in which an adversary:
1 Gets hold of two HF datasets.
2 For each household computes a number of features

based on the data in the two datasets.
3 Uses the features to link together the identities used in

the two HF datasets.
4 For each correctly linked identity the adversary

obtains an extended HF dataset.
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Linking together data produced by the same source
(household), but stored under different pseudonyms.

We assume a scenario in which an adversary:
1 Gets hold of two HF datasets.
2 For each household computes a number of features

based on the data in the two datasets.
3 Uses the features to link together the identities used in

the two HF datasets.
4 For each correctly linked identity the adversary

obtains an extended HF dataset.

What is the effect of the dataset size and collection
season on the de-pseudomynization ratio?



Choosing features

V. Tudor (tudor@chalmers.se) 23 / 64

Statistical features that can be computed efficiently on HF data:

# Feature name Abbrev. Description
1 Standard deviation std variation of energy consumption
2 Mode mode most common consumption value
3 Mean consumption meanc average energy consumption
4 Max consumption maxc maximum energy consumption
5 Coefficient of variation cv ratio of standard deviation to mean

Each household data record becomes a point in a
multi-dimensional space→ a distance metric can be used to
find similar households.



Seasonal results - combined features std, mode, meanc
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season: Winter
feature: comb2
test set: [2:400]

season: Summer
feature: comb2
test set: [2:400]

season: Spring
feature: comb2
test set: [2:400]
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Random guessing
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Assume that we have two HF datasets using different
pseudonyms for the N households stored in each.

Probability to match:
1 pseudonym: P[1 out of N matched ] = 1

N

2 pseudonyms: P[2 out of N matched ] = 1
N ×

1
N−1

...
k pseudonyms:
P[k out of N matched ] = 1

N ×
1

N−1 × ...×
1

N−k+1

P[k out of N matched ] =
∏k

l=1
1

N−l+1

N pseudonyms: P[N out of N matched ] = 1
N!

Random guessing might work for datasets with a small number of households, but it becomes harder as the

size of datasets increases.



Summary - de-pseudonymization

Data
Granularity

Data
Retention Time

Pseudonyms

Safe
Zone

Unsafe
Zone

The number of households in the dataset and collection
season influences the efficiency of the de-pseudonymization.

The number of re-identified households is not proportional with
the size of the dataset.

The characteristics of the Advanced Metering Infrastructure
dataset should be taken into consideration when evaluating or
developing Privacy Enhancing Technologies for this domain.
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Complete adversarial picture
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Reporting sensitive data by
using different identities

A→ {A′, A′′, A′′′}

The time window for keeping a
client’s data

...days,months, years, ...

The level of precision on which
consumed energy is reported

Wh, kWh, 10n × kWh, ...



Adversarial strategy
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1. The adversary gets hold on two datasets, one LF and one HF.
2. For each round (time period of data):

the adversary identifies unique smart meters based on their
energy consumption index values
the values for the identified smart meters are removed from
the future rounds

3. The adversary repeats this for each round until she has
identified all smart meters or she has used all time periods of
data.

Her purpose is to identify uniquely a large number of customers.

HF→ LF’→ LF



Probabilistic model - Game of balls and bins
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Begin

The bins are created based on
their width (data granularity).
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Begin

The bins are created based on
their width (data granularity).

Round 1

The balls (energy consumption
index values) from this specific
period are distributed in the
bins.
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Begin

The bins are created based on
their width (data granularity).

Round 1

The balls (energy consumption
index values) from this specific
period are distributed in the
bins.

The balls that fall alone in their
bin signify smart meters that are
uniquely identified.
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Begin

The bins are created based on
their width (data granularity).

Round 1

The balls (energy consumption
index values) from this specific
period are distributed in the
bins.

The balls that fall alone in their
bin signify smart meters that are
uniquely identified.

Round 2

The values for the smart meters
identified last round are
removed from this round data.
The identification is repeated.



Probabilistic framework

Assume a Poisson distribution of balls into bins2

the expected number of consumption indexes identified uniquely at round j :

Ej [bins with 1 ball] = e−
mj×w

M × mj

For two consecutive rounds j−1,j

at each round we remove the identified consumption indexes: mj = mj−1 − Ej−1[bins with 1 ball]

the number of consumption indexes at current round depends only on the number of consumption indexes

at previous round and the number of bins considered: mj = mj−1 × (1− exp (−
mj−1×w

M ))

The game ends when
all balls have been removed from the game: mj = 0

all the time periods with available data have been used: j > T

2
Adapted from: M. Mitzenmacher and E. Upfal - Probability and computing: Randomized algorithms and

probabilistic analysis, Cambridge University Press, 2005
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Experiments

Adversarial strategy modeled as a game of balls and bins
We use the sizes of the different LF datasets as input for
the game of balls and bins

Actual execution of adversarial strategy
We run the adversarial strategy algorithm on the
different LF datasets

What is the effect of data granularity and data timespan on
the ability of the adversary to identify a large number of
customers?

V. Tudor (tudor@chalmers.se) 35 / 64



Results - 7 months period
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What is the effect of data granularity and data timespan on the ability of the adversary to identify a large
number of customers?
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Data granularity and data timespan

Granularity 1 kWh
Newly found Total found
smart meters smart meters %

Time Model RW Model RW
period data data

m1 18,461 11,698 95.4% 60.5%
m2 871 5,655 99.9% 89.7%
m3 2 1,669 100 % 98.3%
m4 0 155 100 % 99.1%
m5 0 11 100 % 99.2%
m6 0 11 100 % 99.3%
m7 0 10 100 % 99.3%

Total 19,334 19,209 100 % 99.3%

Granularity 10 kWh
Newly found Total found
smart meters smart meters %

Time Model RW Model RW
period data data

m1 12,182 1,670 63.0% 8.6%
m2 6,029 1,027 94.1% 13.9%
m3 1,093 671 99.8% 17.4%
m4 30 543 100 % 20.2%
m5 0 487 100 % 22.7%
m6 0 579 100 % 25.7%
m7 0 651 100 % 29.1%

Total 19,334 5,628 100 % 29.1%

A change in the granularity of data reported monthly can
significantly reduce the number of identified smart meters
If laws and regulations allow→ customers can opt for this
type of reporting to gain extra privacy
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Summary - de-anonymization

Data granularity and data timespan have an important
influence in AMI data privacy
These two characteristics should be taken in consideration
when releasing datasets to 3rd parties
Even with the simple model a large number of smart
meters can be identified uniquely based on their energy
consumption
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Road so far

The Advanced Metering Infrastructure (AMI)
AMI data - utility and privacy
Privacy issues - de-anonymization and de-pseudonymization
Differential-privacy and AMI data
AMI data application - energy load forecast using
DP-aggregated AMI data
Conclusion
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Differential privacy3 (DP)

General Definition
A randomized function M gives ε-differential privacy for all data sets D and D′

differing in at most 1 element, and all S ⊆ Range(M), if

Pr [M(D) ∈ S] ≤ exp(ε)× Pr [M(D′) ∈ S]

Noise addition
For f : D → Rd , the mechanism M, which adds independently generated
noise following the Laplace distribution L(∆f/ε) to each of the d output
terms, enjoys ε-differential privacy.

Mechanism’s Sensitivity

For f : D → Rd , the L1 sensitivity of f is ∆f = maxD,D′ ‖ f (D)− f (D′) ‖1 for all
D,D′ differing in at most 1 element.

3
Dwork, C., Naor, M., Pitassi, T. and Rothblum, G.N., 2010. Differential privacy under continual observation. In

Proceedings of the forty-second ACM symposium on Theory of computing (pp. 715-724). ACM.
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Differential privacy - maximizing the utility
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For f : D → Rd , the L1 sensitivity of f is ∆f = maxD,D′ ‖ f (D)− f (D′) ‖1 for all
D,D′ differing in at most 1 element.

for binary data ({0, 1}) the sensitivity is at most 1

for real data (R) the sensitivity is∞→ infinite noise, no utility



Differential privacy - maximizing the utility
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For f : D → Rd , the L1 sensitivity of f is ∆f = maxD,D′ ‖ f (D)− f (D′) ‖1 for all
D,D′ differing in at most 1 element.

for binary data ({0, 1}) the sensitivity is at most 1

for real data (R) the sensitivity is∞→ infinite noise, no utility

Solution?



Differential privacy - maximizing the utility
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For f : D → Rd , the L1 sensitivity of f is ∆f = maxD,D′ ‖ f (D)− f (D′) ‖1 for all
D,D′ differing in at most 1 element.

for binary data ({0, 1}) the sensitivity is at most 1

for real data (R) the sensitivity is∞→ infinite noise, no utility

Solution?

Limit the noise by bounding a

the sensitivity to a value B.
L(∆f/ε)→ L(B/ε)

a
Gulisano, V., Tudor, V., Almgren, M. and Papatriantafilou, M., 2016, May. BES: Differentially Private and

Distributed Event Aggregation in Advanced Metering Infrastructures. In Proceedings of the Second ACM
International Workshop on Cyber-Physical System Security (pp. 59-69). ACM.



Simple DP aggregation - employing ∆f

Simple Aggregation

S =
∑n

i=1 y i
t , where y i

t ∈ [0,E ].

Noise addition
L(k∆f/ε), where k = dWS/WAe.

Measuring the error

∣∣∣S−(S+L(k∆f/ε))
S

∣∣∣ =

∣∣∣∣∣∣∣∣0−
L(k∆f/ε)

S︸ ︷︷ ︸
Errnoise

∣∣∣∣∣∣∣∣
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if ∆f →∞ (very large consumption values) then
the noise introduced by L(k∆f/ε) will be very large



Bounded DP Aggregation - employing B

Bounded Aggregation

SB =
∑n

i=1 min(y i
t ,B), where B ∈ [0,E ].

Noise addition
L(kB/ε), where k = dWS/WAe.

Measuring the error

∣∣∣S−(SB+L(kB/ε))
S

∣∣∣ =

∣∣∣∣∣∣∣∣
S − SB

S︸ ︷︷ ︸
Errapprox

− L(kB/ε)
S︸ ︷︷ ︸

Errnoise

∣∣∣∣∣∣∣∣
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Limit the noise by bounding the sensitivity to B.
How to choose B?



Bes - choosing a bound B
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Using open data repositories

Compute B on data from an already public dataset or which can easily be
made public.
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Using open data repositories

Compute B on data from an already public dataset or which can easily be
made public.

Use a differentially private mechanism to compute B

Choose the bound B among a set of candidate values B = {B1, . . . ,Bo}
with a given mechanism M run over a dataset (Dexplore) containing the
events used to quantify the utility of each individual bound in B.



Bes - choosing a bound B
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Using open data repositories

Compute B on data from an already public dataset or which can easily be
made public.

Use a differentially private mechanism to compute B

Choose the bound B among a set of candidate values B = {B1, . . . ,Bo}
with a given mechanism M run over a dataset (Dexplore) containing the
events used to quantify the utility of each individual bound in B.

Most Common B (MCB)
MCB aims at finding the bound B ∈B resulting in the minimum error for the majority of the SMs.

High Enough B (HEB)
HEB looks for the bound B ∈B for which at least p of the n smart meters observe an error lower than the one
observed for any higher bound Bj .



Error composition - DP bounded aggregation
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Road so far

The Advanced Metering Infrastructure (AMI)
AMI data - utility and privacy
Privacy issues - de-anonymization and de-pseudonymization
Differential-privacy and AMI data
AMI data application - energy load forecast using
DP-aggregated AMI data
Conclusion
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AMI load forecast scenario

PET + DP-Aggregation
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Using data for load forecast while protecting customers’ privacy.
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Load forecast

Load forecast
Predicting energy load based with the help of a model built on
historical records.

Time

0 50 100 150 200

k
W

h

-1

0

1

2

3

4

5

6

Short term load forecast
Aims to predict consumption for short time frames, typically one hour
to one week.
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Load forecast - Model parameters

ŷ = βY + γW + δD + αA
Y - energy load data,

W - weather-related data,
D - calendar-related data,
A - anthropological data.

Variable Characteristic Forecast Privacy
Y Granularity + -
Y Data collection periodicity (sampling) - +
Y Dataset size (aggregated # customers) + +
Y Training window size (duration) + -
Y Test window size (duration) + -
Y Predicted horizon (duration) - -
W Temperature + neutral
D Day of week + neutral?

A Anthropological data ++ - -
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Load forecast - linear models

Persistence model (Seasonal Naı̈ve) - PM

ŷt = yt−24

Linear regression model 1 - LR1

ŷt = β1yt−24 + β2yt−48 + β3yt−72

Linear regression model 2 - LR2

ŷt = β1yt−24 + β2yt−48 + β3yt−72 + β4T̂t + β5D(t)

LR1 and LR2 - Adapted from Y. Iwafune et al., “Short-term forecasting of residential building load for distributed
energy management,” in Energy Conference (ENERGYCON), 2014 IEEE International, May 2014, pp. 1197–1204.
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Load forecast - data aggregation

Simple aggregation

yt =
N∑

i=1

y i
t

DP-aggregation

ytDP =
N∑

i=1

y i
t + L(B/ε)

DP-aggregation deters de-anonymization attacksa.

a
Tudor, V., Almgren, M., and Papatriantafilou, M., 2015. A study on data de-pseudonymization in

the smart grid. In Proceedings of the Eighth European Workshop on System Security (p. 2).
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Evaluation

Evaluate the accuracy of three forecast models
using simply aggregated AMI data
using DP-aggregated AMI data
on a variable number of customers

# Name Train Forecast Forecast Number of
Window Horizon Window Customers

1 PM - 24h 1440h 10—135
2 DPPM - 24h 1440h 10—135
3 LR1 1440h 24h 1440h 10—135
4 DPLR1 1440h 24h 1440h 10—135
5 LR2 1440h 24h 1440h 10—135
6 DPLR2 1440h 24h 1440h 10—135
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Average Mean Absolute Percentage Error (MAPE) for Persistent Method (PM)

24h forecast horizon, 100 tests/day and 60 predicted days
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Average MAPE for Linear Regression model 1 (LR1)

24h forecast horizon, 100 tests/day and 60 predicted days
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Zoom in 8% − 17% area.
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Average MAPE for Linear Regression model 2 (LR2)

24h forecast horizon, 100 tests/day and 60 predicted days
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Which forecast method to use?

PET + DP-Aggregation
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Number of PM DPPM LR1 DPLR1 LR2 DPLR2
Customers

10 12.50 54.80 12.79 15.90 11.82 14.35
35 7.84 16.22 9.07 11.08 8.57 10.21
50 7.43 13.00 8.94 10.45 8.43 9.62

100 7.17 9.30 9.26 9.91 8.82 9.35
135 6.78 8.25 8.92 9.41 8.49 8.87

Average MAPE (60 predicted days, 100 tests/day for DP methods)
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PM: ŷt = yt−24

LR1: ŷt = β1yt−24 + β2yt−48 + β3yt−72

LR2: ŷt = β1yt−24 + β2yt−48 + β3yt−72 + β4T̂t + β5D(t)



Summary - DP data application

Differential privacy can successfully be employed in AMI
data applications such as energy consumption forecasting.
Short term forecast methods employing small-scale AMI
data perform well and they can receive a boost in accuracy
by further integrating privacy neutral information.
Compared with their classical counterparts, the noise
added by the forecast methods utilizing DP-aggregated
data will introduce a small prediction error. This error
increases with a decrease in the customers’ group size.

PET + DP-Aggregation

Electricity

AMI data

Renewable 
Forecast

Energy 
Forecast

Load 
ForecastDP-Aggregated AMI data

El
e

ct
ri

ca
l G

ri
d

 O
p

er
at

io
n

V. Tudor (tudor@chalmers.se) 63 / 64



That’s all folks!

The Advanced Metering Infrastructure (AMI)
AMI data - utility and privacy
Privacy issues - de-anonymization and de-pseudonymization
Differential-privacy and AMI data
AMI data application - energy load forecast using
DP-aggregated AMI data
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